skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clancy, Robin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous findings show that large-scale atmospheric circulation plays an important role in driving Arctic sea ice variability from synoptic to seasonal time scales. While some circulation patterns responsible for Barents–Kara sea ice changes have been identified in previous works, the most important patterns and the role of their persistence remain unclear. Our study uses self-organizing maps to identify nine high-latitude circulation patterns responsible for day-to-day Barents–Kara sea ice changes. Circulation patterns with a high pressure center over the Urals (Scandinavia) and a low pressure center over Iceland (Greenland) are found to be the most important for Barents–Kara sea ice loss. Their opposite-phase counterparts are found to be the most important for sea ice growth. The persistence of these circulation patterns helps explain sea ice variability from synoptic to seasonal time scales. We further use sea ice models forced by observed atmospheric fields (including the surface circulation and temperature) to reproduce observed sea ice variability and diagnose the role of atmosphere-driven thermodynamic and dynamic processes. Results show that thermodynamic and dynamic processes similarly contribute to Barents–Kara sea ice concentration changes on synoptic time scales via circulation. On seasonal time scales, thermodynamic processes seem to play a stronger role than dynamic processes. Overall, our study highlights the importance of large-scale atmospheric circulation, its persistence, and varying physical processes in shaping sea ice variability across multiple time scales, which has implications for seasonal sea ice prediction. Significance StatementUnderstanding what processes lead to Arctic sea ice changes is important due to their significant impacts on the ecosystem, weather, and shipping, and hence our society. A well-known process that causes sea ice changes is atmospheric circulation variability. We further pin down what circulation patterns and underlying mechanisms matter. We identify multiple circulation patterns responsible for sea ice loss and growth to different extents. We find that the circulation can cause sea ice loss by mechanically pushing sea ice northward and bringing warm and moist air to melt sea ice. The two processes are similarly important. Our study advances understanding of the Arctic sea ice variability with important implications for Arctic sea ice prediction. 
    more » « less
  2. Abstract The predictability of sea ice during extreme sea ice loss events on subseasonal (daily to weekly) time scales is explored in dynamical forecast models. These extreme sea ice loss events (defined as the 5th percentile of the 5-day change in sea ice extent) exhibit substantial regional and seasonal variability; in the central Arctic Ocean basin, most subseasonal rapid ice loss occurs in the summer, but in the marginal seas rapid sea ice loss occurs year-round. Dynamical forecast models are largely able to capture the seasonality of these extreme sea ice loss events. In most regions in the summertime, sea ice forecast skill is lower on extreme sea ice loss days than on nonextreme days, despite evidence that links these extreme events to large-scale atmospheric patterns; in the wintertime, the difference between extreme and nonextreme days is less pronounced. In a damped anomaly forecast benchmark estimate, the forecast error remains high following extreme sea ice loss events and does not return to typical error levels for many weeks; this signal is less robust in the dynamical forecast models but still present. Overall, these results suggest that sea ice forecast skill is generally lower during and after extreme sea ice loss events and also that, while dynamical forecast models are capable of simulating extreme sea ice loss events with similar characteristics to what we observe, forecast skill from dynamical models is limited by biases in mean state and variability and errors in the initialization. Significance Statement We studied weather model forecasts of changes in Arctic sea ice extent on day-to-day time scales in different regions and seasons. We were especially interested in extreme sea ice loss days, or days in which sea ice melts very quickly or is reduced due to diverging forces such as winds, ocean currents, and waves. We find that forecast models generally capture the observed timing of extreme sea ice loss days. We also find that forecasts of sea ice extent are worse on extreme sea ice loss days compared to typical days, and that forecast errors remain elevated following extreme sea ice loss events. 
    more » « less